Time seems to worry us every day, but do we ever ask if it really exists in the way we perceive it? This first post about the illusory nature of perceived time reports new findings that lead us to question the deep nature of time.
The following text is re-blogged with some editing from its source.

Time: it’s no doubt a confusing topic, and it gets even more confusing the more we try to unearth its secrets. Physicists have been examining the workings of time for decades, and the results published about it are mind-altering to contemplate, to say the least, and show that time might not exist as we think it does.

A new paper titled Time crystals from minimum time uncertainty” that was recently revised and re-published in The European Physical Journal marks just one example of the astonishing research being conducted on this subject. In it, the researchers have proposed that the shortest physically meaningful length of time might really be multiple orders of magnitude longer than Planck time. Planck time refers to the time required for light to travel, in a vacuum, which would be a distance of 1 Planck length. The unit is named after Max Planck, who was the first to propose the theory.

Nur Faisal from the University of Waterloo, one of the researchers involved in the study, told phys.org that it might be possible for the minimum time scale in the universe to actually be much larger than Planck time. He also said that this can be “directly tested experimentally.”

No experiment has ever come close to examining Planck time directly because it is so short. Nevertheless, as phys.org points out, there is a good amount of theoretical support for the existence of Planck time. Faisal explains: “In our paper, we have proposed that time is discrete in nature, and we have also suggested ways to experimentally test this proposal.”

So, how do they figure that time might be much larger than Planck time? They measured the rate of spontaneous emission of a hydrogen atom:

The modified quantum mechanical equation predicts a slightly different rate of spontaneous emission than that predicted by the unmodified equation, within a range of uncertainty. The proposed effects may also be observable in the decay rates of particles and of unstable nuclei.

The researchers also mention that their findings could change the basic equations of quantum mechanics, and would modify the very definition of time that’s understood today.


As per this experiment, researchers noted that our perception of time as something that is continuously flowing is just an illusion. Faizal explains:

The physical universe is really like a movie/motion picture, in which a series of still images shown on a screen creates the illusion of moving images. Thus, if this view is taken seriously, then our conscious precipitation of physical reality based on continuous motion becomes an illusion produced by a discrete underlying mathematical structure. This proposal makes reality platonic in nature. However, unlike other theories of platonic idealism, our proposal can be experimentally tested and not just be argued for philosophically.